翻訳と辞書
Words near each other
・ Retreat railway station (County Antrim)
・ Retreat River
・ Retreat Rosenwald School
・ Retreat Syndrome
・ Retreat Through the Wet Wasteland
・ Retreat to Montalban
・ Retizafra decussata
・ Retizafra dentilabia
・ Retizafra valae
・ Retizhe Cove
・ Retje
・ Retje nad Trbovljami
・ Retjenu
・ Retjons
・ Retka
Retkes convergence criterion
・ Retkes identities
・ Retki
・ Retkinia
・ Retko te viđam sa devojkama
・ Retkocer
・ Retkovci
・ Retkowo
・ Retków
・ Retków mine
・ Retków, Lower Silesian Voivodeship
・ Retków, Masovian Voivodeship
・ Retla
・ Retlaw Enterprises
・ Retlaw, Alberta


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Retkes convergence criterion : ウィキペディア英語版
Retkes convergence criterion

In mathematics, the Retkes convergence criterion, named after Zoltán Retkes, gives necessary and sufficient conditions for convergence of numerical series. Numerous criteria are known for testing convergence. The most famous of them is the so-called Cauchy criterion, the only one that gives necessary and sufficient conditions. Under weak restrictions the Retkes criterion gave a new necessary and sufficient condition for the convergence. The criterion will be formulated in the complex settings:
Assume that \quad \_^\infty \subset \bold C and z_i\neq z_j\quad if \quad i\neq j\quad. Then
:\sum_^\infty z_k=s \quad\iff\quad \lim_\sum_^n\frac=s
In the above formula \Pi_k(z_1,\ldots,z_n):=(z_k-z_1)(z_k-z_2)\cdots(z_k-z_)(z_k-z_)\cdots(z_k-z_n)\quad k=1,\ldots,n.
The equivalence can be proved by using the Hermite–Hadamard inequality.
==References==

* Zoltán Retkes, "An extension of the Hermite–Hadamard Inequality", ''Acta Sci. Math. (Szeged)'', 74 (2008), pages 95–106.
* Encyclopedia of Mathematics. "Cauchy Criteria". European Mathematical Society. Retrieved 4 March 2014.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Retkes convergence criterion」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.